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Who is Daniel?

- redhat



Real-time systems

Systems which deal with external events with timing constraints
Real from real/external-world
Time from timing constraints

The response of an event is correct if and only if:
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Real-time scheduler modeling

e A systemis view as a “model”
o A system is composed by a set of n tasks
o A task is a set of infinity recurring jobs.

o Each task is characterized by some parameters:
m CorQ=WCET or Budget

m TorP =Period or Minimum inter-arrival time
m D =Deadline
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on Linux, DL tasks are characterized by:

- dl_period = Period [sporadic || periodic]
- dl_deadline = Relative deadline [ by default == period ... but can be <]
- dl_runtime = Execution time;
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Regarding Period:

i i Y i 1
Activation |1 2 : 3 4 S - g i H - | et

Time i1 1 12 13 ha

[
w
iy
e

)
)
e
o

Periodic

Activation |1 2 5 & Activatior

Time i1 2 4 5 5 i1 s 10 i 13 14 a5 16 17 18 s ‘o izl e
i : i B ; i 02

Sporadic

iy
Fa

W TG
B
T

Activation L L

Time i1 iz i & 5

)
(=)
=
15}
s
Py
)
ey
7]

Aperiodic

6 Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira ;zetgs ‘ redhat



Regarding Deadline:
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Why EDF scheduler?



Fixed Priority versus Deadline
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EDF is optimal!

*Under optimal conditions

- redhat



EDF is optimal (U<=1) with

e |f tasks does not misbehave

e Job does not suspend (dequeue/enqueue) during an activation
e Implicit deadline (deadline == period)

e Uniprocessor

Note:
[UTtilization = C/T (or Q/P, runtime/period)
[Dlensity = C/D (or Q/D, runtime/deadline)
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So, let’s explore each point!

- redhat



What if a task runs longer than it said (C) it was suppose to run?
Or
What if the utilization goes higher than 100%?
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The domino effect
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To avoid the domino problem...

e Admission control to avoid overload:
o The sum of the Utilization of all tasks cannot be higher than
rt_period-rt_runtime/rt_period (by default 95%).

e C(BS to avoid a misbehaving task to run more than runtime.
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CBS: Constant Bandwidth Server

- Throttle a misbehaving task that uses more than allowed
- Try to provide runtime CPU time every period.
- It relies on non-suspending tasks.
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CBS & Suspending task

By assuming non-suspending tasks...
e Itisimplicitly assumed that, when queued, the absolute U of a task is
bound to its relative U (U=runtime/period).
e |n other words: The task will never overload the system.
e |If the task suspends/blocks, that might not be the case...
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For example, a task with U = 3/9 blocks with 2/8

Notation: C/P & C/D/P
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Returning with U=2/3

Ua

Notation: C/P & C/D/P
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CBS & Self-suspending tasks

- CBS wakeup rule (ensures that a task will not overload the system):
If the deadline is in the past:
new absolute runtime and absolute deadline is set.
If the deadline is in the future:
If the possible U < allowed U
Go ahead and run, my little reservation.
else
Reset runtime, set the new deadline
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Replenish the runtime and reset period

U=2/8 Original deadline New deadline

Notation: C/P & C/D/P

21 Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira ;zetis ‘ redhat

Real-Time Systems Laboratory



22

In the presence of another deadline task...

Original deadline

New deadline

Notation: C/P & C/D/P
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What do we care more,
having runtime/period after a wakeup
or try to make the deadline?



Revised CBS & Self-suspending tasks

- CBS wakeup rule (ensures that a task will not overload the system):

If the deadline is in the past:
new absolute runtime and absolute deadline is set.
If the deadline is in the future:
If the absolute U < relative U
Go ahead and run, my little CBS.
else
Truncate runtime, new runtime = (C / P) * laxity
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Using the revised CBS:

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18

U =3/9 U, = 4/9 U =3/9
As U 2/3 > 3/9
U ="1/3

Notation: C/P & C/D/P

25  Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira ;zetis ‘ redhat.

RealTime Systems Laboratory



Should we consider using the revised
CBS?



Constrained deadline

e Linux’s deadline scheduler accepts task with deadline <= period.

e Inthe presence of an limplicit deadline task, the admission test is not
valid to “qguarantee” the deadline, even on single-core systems.

e For example, two tasks with 3/10 (60%) but deadline of 5:

Notation: C/P & C/D/P
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That is easy!
We should use runtime/deadline,
not runtime/period!



No, it is too pessimistic...

Notation: C/P & C/D/P
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There is one case in which we decided to
use it, with revised CBS...



Self-suspending constrained deadline task
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Notation: C/P & C/D/P

31 Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira ;zetis ‘ redhat

Real-Time Systems Laboratory



Self-suspending constrained deadline task

1/3/9

Notation: C/P & C/D/P
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Self-suspending constrained deadline task

1/3/9

Notation: C/P & C/D/P
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Self-suspending constrained deadline task

1/3/9

e e e e
O 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18
2/4/10 2/4/10

Notation: C/P & C/D/P
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Self-suspending constrained deadline task

1/3/9
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Self-suspending constrained deadline task

1/3/9

2/4/10 2/4/10

i e L e e
o 1 2 3 4 5 66 7T 8 9 10 11 12 13 14 15 16

Notation: C/P & C/D/P
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Revised CBS & Suspending & Constrained DL

- CBS wakeup rule (ensures that a task will not overload the system):
If the deadline is in the past:
If the next period is in the future:
Throttle waiting the next period;
else
new absolute runtime and absolute deadline is set.
If the deadline is in the future:
If the absolute Density is < relative Density
Go ahead and run, my little CBS.
else
Truncate runtime, new runtime = (C / D) * laxity
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Self-suspending constrained deadline task

1/3/9

2/4/10 0.5/1/7

0 1 2 3 4 5 6

Notation: C/P & C/D/P
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Mamma mial!
Things are confuse for deadline < period



Suspending + constrained deadline
Isa REAL open issue.



Let’s talk about multi-processor
scheduling



Multi-processor scheduling

a scheduler can be classified as:

Partitioned: When each scheduler manages a single CPU
- Global: When a single scheduler manages all M CPUs of the system

Clustered: When a single scheduler manages a disjoint subset of
the M CPUs

- a CPU cannot belong to two “domains”.

P P P P Clustered || Clustered

Scheduler "
domain GI_?!)al

CPUs
éZem ‘ redhat
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Let’s talk about global scheduling!



Global scheduling
Global scheduling adds a lot of anomalies.
For instance, there is no critical instant.
- Release all tasks at same time is not the worst case anymore
“Obvious things” are not obvious anymore:
- Reducing the load of a schedulable taskset does not turn guarantee the
task set will still schedulable...
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Dhall’s effect
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Reducing the load...
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Increasing a little bit... BOOM
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Taking Dhall’s effect in account, an admission test would be:
- Y(U)y<=M-(M-1)*U__
- Where U__ is the highest U of all tasks

Max SUM(U) the system can schedule

0 | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Max utilization over all tasks
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Solution: Partitioned + Clustered

Cluster
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What if those small tasks were per-cpu
tasks?



So should we always use partitioned?

- redhat
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How about this scenario?

Notation: C/P & C/D/P
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Neither partitioned nor global are
optimal...



Is there anything else we could?

-« redhat



The word is: semi-partitioned

- redhat
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Let’s take this scenario:

16 17 18

™
16 17 18

Notation: C/P & C/D/P
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Let’s pin some tasks:
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Then, we split the other one....
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Notation: C/P & C/D/P
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Hey hey hey! Didn’t you say constrained
deadline tasks are a problem?



They are not always a problem:

Notation: C/P & C/D/P
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And voila!

|
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Notation: C/P & C/D/P
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How good is this idea?



B. Brandenburg and M. Gul

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor
Real-Time Scheduling with Semi-Partitioned Reservations:

“Empirically, near-optimal hard real-time schedulability
—usually 299% schedulable utilization —
can be achieved with simple, well-known and well-
understood, low-overhead techniques (+ a few tweaks).”
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Daniel Casini, Alessandro Biondi, Giorgio Buttazzo

Semi-Partitioned Scheduling of Dynamic Real-Time Workload: A Practical
Approach Based on Analysis-Driven Load Balancing.
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Online semi-partitioned comparison:
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Online semi-partitioned comparison:
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Affinity! For almost free

Affinity for global scheduling is a problem

For semi-partitioned... it is not.
- Just one more input to the heuristics
- Possible to make a “per-cpu fake load” to reserve time for CFS
- DL Server to schedule CFS: Hierarchical scheduler

- Are-implementation of RT Throttling:
- [PATCH] sched/rt: RT_RUNTIME_GREED sched feature
- https://lkml.org/lkml/2016/11/7/55
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We still have arguments for another talk



But | am being throttled...



Questions?

- redhat



Thank you! Obrigado! Grazie Mille!



