- redhat.

Deadline Scheduler

Open Issues

Daniel Bristot de Oliveira
Red Hat, Inc.

Who is Daniel?

- redhat

Real-time systems

Systems which deal with external events with timing constraints
Real from real/external-world
Time from timing constraints

The response of an event is correct if and only if:

A

Value of
the result

HPC

The logical response is correct
It is produced within a deadline

Value of

Soft Real-time

the result

Request

3 Deadline Scheduler - Open Issues -

A

Value of

Hard Real-time

the result

o

Time
request

Daniel Bristot de Oliveira

Deadline Time

v

-

reguest

Deadline Time

v

;zeti.s ‘ redhat

Real-Time Systems Laboratory

Real-time scheduler modeling

e A systemis view as a “model”
o A system is composed by a set of n tasks
o A task is a set of infinity recurring jobs.

o Each task is characterized by some parameters:
m CorQ=WCET or Budget

m TorP =Period or Minimum inter-arrival time
m D =Deadline

4 Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira

é?etu ‘ redhat.

on Linux, DL tasks are characterized by:

- dl_period = Period [sporadic || periodic]
- dl_deadline = Relative deadline [by default == period ... but can be <]
- dl_runtime = Execution time;

5 Deadline Scheduler - Daniel Bristot de Oliveira, Red Hat. ;zetis ‘ redhat.

Real-Time Systems Laboratory

Regarding Period:

i i Y i 1
Activation |1 2 : 3 4 S - g i H - | et

Time i1 1 12 13 ha

[
w
iy
e

)
)
e
o

Periodic

Activation |1 2 5 & Activatior

Time i1 2 4 5 5 i1 s 10 i 13 14 a5 16 17 18 s ‘o izl e
i : i B ; i 02

Sporadic

iy
Fa

W TG
B
T

Activation L L

Time i1 iz i & 5

)
(=)
=
15}
s
Py
)
ey
7]

Aperiodic

6 Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira ;zetgs ‘ redhat

Regarding Deadline:

' 1) 1

=

Time {1 2 3 4 5 6 12 13 14

@
iy
=

Implicit

; Ly v o :
Activation |1 2 L 4 5 L 7 I.__
i i o i H o g

Time (1 2 4 5 [12 13 4 15 16 17 1 9

@
ey
=
i

Constrained

Activation |1 2
Time i1 2 3 4 g

B 8 HMo i 2 13 14 15 (6 iy 18 e

i

Arbitrary

7 Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira ;?etg:_g ‘ redhat

Real-Time Systems Lat

Why EDF scheduler?

Fixed Priority versus Deadline

T1 T1
< s
73 l T3
Ao B BEE | R
0 2 4 6 8 10 12 14 16 18 20 22 24 0 2 4 6 8 10 12 14 16 18 20 22 24

9 Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira ?etis ‘ redhat.

RealTime Systems Laboratory

EDF is optimal!

*Under optimal conditions

- redhat

EDF is optimal (U<=1) with

e |f tasks does not misbehave

e Job does not suspend (dequeue/enqueue) during an activation
e Implicit deadline (deadline == period)

e Uniprocessor

Note:
[UTtilization = C/T (or Q/P, runtime/period)
[Dlensity = C/D (or Q/D, runtime/deadline)

1 Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira ;zetis ‘ redhat

Real-Time Systems Laboratory

So, let’s explore each point!

- redhat

What if a task runs longer than it said (C) it was suppose to run?
Or
What if the utilization goes higher than 100%?

13 Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira ;zeti._g ‘ redhat

Real-Time Systems Laboratory

14

The domino effect

T1

72

AAIST ety lalal
Voo lala \r’////‘f

AAIAALS
g Al

Pl
Pl o

Pl P

FA2APAPAPAL 2
PRAAIRP2P P 2D PAAPL

A"
N

PHAPZAP 2 AP

AARFAZ P EAL Jf
¢

ol ol aly Pl sl Balal alalal of ala
RAMAFIARR AR PRAPRN AN

7

/ E Vallal
PRPPPAPPAPAAP PRSPPI L

Pl ol sl sl Bl "l s Vol ol Bl ol ol ol

AARPAP 222 A
Vol Wall ool Wl ol 'l s

Y

™
™ N
)

PAPPARP22P P AR 2 PRPPRAIPRIPAL PR P2
el Dbl alalals PRAPPPPPRAIPALr PRI

0 2 4 6 8

10 12 14 16

18 20 22

24

Deadline Scheduler - Daniel Bristot de Oliveira, Red Hat.

Q. redhat.

To avoid the domino problem...

e Admission control to avoid overload:
o The sum of the Utilization of all tasks cannot be higher than
rt_period-rt_runtime/rt_period (by default 95%).

e C(BS to avoid a misbehaving task to run more than runtime.

15 Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira ;zetis ‘ redhat

Real-Time Systems Laboratory

CBS: Constant Bandwidth Server

- Throttle a misbehaving task that uses more than allowed
- Try to provide runtime CPU time every period.
- It relies on non-suspending tasks.

16 Deadline Scheduler - Daniel Bristot de Oliveira, Red Hat. ;zetis ‘ redhat.

Real-Time Systems Laboratory

CBS & Suspending task

By assuming non-suspending tasks...
e Itisimplicitly assumed that, when queued, the absolute U of a task is
bound to its relative U (U=runtime/period).
e |n other words: The task will never overload the system.
e |If the task suspends/blocks, that might not be the case...

17 Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira ;zetis ‘ redhat

Real-Time Systems Laboratory

For example, a task with U = 3/9 blocks with 2/8

Notation: C/P & C/D/P

18 Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira ;zeti._s ‘ redhat

Real-Time Systems Laboratory

Returning with U=2/3

Ua

Notation: C/P & C/D/P

19 Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira ?eti._s ‘ redhat

aaaaaaaaaaaaaaaaaaaaaaa

CBS & Self-suspending tasks

- CBS wakeup rule (ensures that a task will not overload the system):
If the deadline is in the past:
new absolute runtime and absolute deadline is set.
If the deadline is in the future:
If the possible U < allowed U
Go ahead and run, my little reservation.
else
Reset runtime, set the new deadline

20 Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira ;zetis ‘ redhat

Real-Time Systems Laboratory

Replenish the runtime and reset period

U=2/8 Original deadline New deadline

Notation: C/P & C/D/P

21 Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira ;zetis ‘ redhat

Real-Time Systems Laboratory

22

In the presence of another deadline task...

Original deadline

New deadline

Notation: C/P & C/D/P

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira

;Petis ‘ redhat.

RealTime Systems Laboratory

What do we care more,
having runtime/period after a wakeup
or try to make the deadline?

Revised CBS & Self-suspending tasks

- CBS wakeup rule (ensures that a task will not overload the system):

If the deadline is in the past:
new absolute runtime and absolute deadline is set.
If the deadline is in the future:
If the absolute U < relative U
Go ahead and run, my little CBS.
else
Truncate runtime, new runtime = (C / P) * laxity

24 Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira

;zetis ‘ redhat

Real-Time Systems Laboratory

Using the revised CBS:

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18

U =3/9 U, = 4/9 U =3/9
As U 2/3 > 3/9
U ="1/3

Notation: C/P & C/D/P

25 Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira ;zetis ‘ redhat.

RealTime Systems Laboratory

Should we consider using the revised
CBS?

Constrained deadline

e Linux’s deadline scheduler accepts task with deadline <= period.

e Inthe presence of an limplicit deadline task, the admission test is not
valid to “qguarantee” the deadline, even on single-core systems.

e For example, two tasks with 3/10 (60%) but deadline of 5:

Notation: C/P & C/D/P

27 Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira

;zeti.s ‘ redhat

Real-Time Systems Laboratory

That is easy!
We should use runtime/deadline,
not runtime/period!

No, it is too pessimistic...

Notation: C/P & C/D/P

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira

?etis ‘ redhat.

RealTime Systems Laboratory

There is one case in which we decided to
use it, with revised CBS...

Self-suspending constrained deadline task

T T
1 2 3 4 5 66 7T 8 9 10 1M 12 13 14 15 16 17 18

Y S SR

2/4/10

Notation: C/P & C/D/P

31 Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira ;zetis ‘ redhat

Real-Time Systems Laboratory

Self-suspending constrained deadline task

1/3/9

Notation: C/P & C/D/P

32 Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira ?eti._s ‘ redhat

Real-Time Systems Laboratory

Self-suspending constrained deadline task

1/3/9

Notation: C/P & C/D/P

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira

Real-Time Systems Laboratory

;zetis ‘ redhat

Self-suspending constrained deadline task

1/3/9

e e e e
O 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18
2/4/10 2/4/10

Notation: C/P & C/D/P

34 Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira ?eti._s ‘ redhat

Real-Time Systems Laboratory

35

Self-suspending constrained deadline task

1/3/9

RSy SES SESSNS

|
7 8 9 10 1 12 13 14 15 16 17 18
2/4/10 2/4/10

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira

aaaaaaaaaaaaaaaaaaaaaaa

36

Self-suspending constrained deadline task

1/3/9

2/4/10 2/4/10

i e L e e
o 1 2 3 4 5 66 7T 8 9 10 11 12 13 14 15 16

Notation: C/P & C/D/P

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira

Real-Time Systems Laboratory

Revised CBS & Suspending & Constrained DL

- CBS wakeup rule (ensures that a task will not overload the system):
If the deadline is in the past:
If the next period is in the future:
Throttle waiting the next period;
else
new absolute runtime and absolute deadline is set.
If the deadline is in the future:
If the absolute Density is < relative Density
Go ahead and run, my little CBS.
else
Truncate runtime, new runtime = (C / D) * laxity

37 Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira ;zeti._g ‘ redhat

Real-Time Systems Laboratory

38

Self-suspending constrained deadline task

1/3/9

2/4/10 0.5/1/7

0 1 2 3 4 5 6

Notation: C/P & C/D/P

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira

aaaaaaaaaaaaaaaaaaaaaaa

Mamma mial!
Things are confuse for deadline < period

Suspending + constrained deadline
Isa REAL open issue.

Let’s talk about multi-processor
scheduling

Multi-processor scheduling

a scheduler can be classified as:

Partitioned: When each scheduler manages a single CPU
- Global: When a single scheduler manages all M CPUs of the system

Clustered: When a single scheduler manages a disjoint subset of
the M CPUs

- a CPU cannot belong to two “domains”.

P P P P Clustered || Clustered

Scheduler "
domain GI_?!)al

CPUs
éZem ‘ redhat

42 Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira

Let’s talk about global scheduling!

Global scheduling
Global scheduling adds a lot of anomalies.
For instance, there is no critical instant.
- Release all tasks at same time is not the worst case anymore
“Obvious things” are not obvious anymore:
- Reducing the load of a schedulable taskset does not turn guarantee the
task set will still schedulable...

44 Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira ;zetis ‘ redhat

Real-Time Systems Laboratory

45

Dhall’s effect

e s O I O B N B
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Tttt
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Tttt "
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Tttt
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Notation: C/P & C/D/P

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira

etz.s

ReatTime Systems Labora

Q. redhat.

Reducing the load...

1/9.999 J
I I I I I | | | | I I I I I I | -

1/9.999 l
1 Il | | Il Il | | | Il | >

1/9.999 l
Il | | 1 Il Il | | i Il Il Il | | | Il Il »

1/9.999

|

o —
N —
w—
N—F
o —
o —1
~N—F
o —1
O —
—0‘44
54
64
E;
G‘
6\“4
S
&

o;
o
w —
~
o —
o —
-
o —
© —
o
~
]
=
o
>
3
®

\
18

Notation: C/P & C/D/P

y

o —
N
w —
N —
o1 —
o —
- —
o —
0 —
6‘4
64
(—54
E;
G‘
6\‘4
:4

46 Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira ;zetgs ‘ redhat

47

Increasing a little bit... BOOM

1/9.999 J

L
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18
1/9.999 J

I e
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18
1/9.999 l

I
0 1 2 3 4 5 6 7 8 9 10 N 12 13 14 15 16 17 18

10/10
I e
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18
Notation: C/P & C/D/P

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira

;zetgs ‘ redhat.

RealTime Systems Laboratory

Taking Dhall’s effect in account, an admission test would be:
- Y(U)y<=M-(M-1)*U__
- Where U__ is the highest U of all tasks

Max SUM(U) the system can schedule

0 | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Max utilization over all tasks

48 Deadline Scheduler - Daniel Bristot de Oliveira, Red Hat. ;zeti._s ‘ redhat.

Real-Time Systems Laboratory

49

Solution: Partitioned + Clustered

Cluster
1/9.999
] O L O O O O O e
0 1 3 4 5 6 T 8 9 10 1 12 13 14 15 16 17 18
1/9.999 J
] I e e e e
0 1 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18
I e e e e
0 1 3 4 5 6 7 8 9 10 N 12 13 14 15 16 17 18
Partition
] I e e e e
0 1 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira

;Petgs ‘ redhat.

RealTime Systems Laboratory

What if those small tasks were per-cpu
tasks?

So should we always use partitioned?

- redhat

52

How about this scenario?

Notation: C/P & C/D/P

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira

?etis ‘ redhat.

RealTime Systems Laboratory

Neither partitioned nor global are
optimal...

Is there anything else we could?

-« redhat

The word is: semi-partitioned

- redhat

56

Let’s take this scenario:

16 17 18

™
16 17 18

Notation: C/P & C/D/P

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira

?etis ‘ redhat.

RealTime Systems Laboratory

Let’s pin some tasks:

12

13

14

15

16

17

18

L

12

13

14

|
15

Notation: C/P & C/D/P

|
16

|
17

|
18

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira

?etis ‘ redhat.

RealTime Systems Laboratory

58

Then, we split the other one....

] I
0 1 2 3 4 5 6 8 9 10 1N 12 13 4 15 16 17 18

T 1/1/9‘ l

T ™
0 1 2 3 4 5 6 8 9 10 1 12 13 14 15 16 17 18

Notation: C/P & C/D/P

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira

;zetis ‘ redhat.

Real-Time Systems Laboratory

Hey hey hey! Didn’t you say constrained
deadline tasks are a problem?

They are not always a problem:

Notation: C/P & C/D/P

60 Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira ?etis ‘ redhat.

RealTime Systems Laboratory

And voila!

|
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18

e L e e e
0 1 2 3 4 5 6 7 8 9 10 N 12 13 14 15 16 17 18
Notation: C/P & C/D/P

61 Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira ?etis ‘ redhat.

RealTime Systems Laboratory

How good is this idea?

B. Brandenburg and M. Gul

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor
Real-Time Scheduling with Semi-Partitioned Reservations:

“Empirically, near-optimal hard real-time schedulability
—usually 299% schedulable utilization —
can be achieved with simple, well-known and well-
understood, low-overhead techniques (+ a few tweaks).”

63 Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira ;zetis ‘ redhat

Real-Time Systems Laboratory

Daniel Casini, Alessandro Biondi, Giorgio Buttazzo

Semi-Partitioned Scheduling of Dynamic Real-Time Workload: A Practical
Approach Based on Analysis-Driven Load Balancing.

64 Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira ;zetis ‘ redhat

Real-Time Systems Laboratory

Online semi-partitioned comparison:

. EEREICY] C=D-LB+EXT —e— G-EDF
S —e— P-EDF-FF
< e —e— P-EDF-WF
3 P-EDF-FF —e— C=D-1B
= 80 86.754 RIS —e— C=D-LB+EXT
T
2
&

o 70
o
Py
g w0
<
50 50.01295 ez

0.1 0.2 0.3 0.4 m 0.5 0.6 0.7

U_AVG

65 Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira petis ‘ redhat.

RealTime Systems Laboratory

Online semi-partitioned comparison:

100 —— G-EDF
P-EDF-BF
] —e— P-EDF-FF
= FYRELER] C=D-LB+EXT — —e— P-EDF-WF
g —e— C=D-LB
= 80 79.44222 [BE:] —e— C=D-LB+EXT
= § 79.44222|
g R
g . EL -
Z 60 61.69699 [AW
50
0.1 0.2 03 0.4 05 m 0.7
U_AVG

66 Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira petis ‘ redhat.

RealTime Systems Laboratory

Affinity! For almost free

Affinity for global scheduling is a problem

For semi-partitioned... it is not.
- Just one more input to the heuristics
- Possible to make a “per-cpu fake load” to reserve time for CFS
- DL Server to schedule CFS: Hierarchical scheduler

- Are-implementation of RT Throttling:
- [PATCH] sched/rt: RT_RUNTIME_GREED sched feature
- https://lkml.org/lkml/2016/11/7/55

67 Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira ;zetis ‘ redhat

Real-Time Systems Laboratory

We still have arguments for another talk

But | am being throttled...

Questions?

- redhat

Thank you! Obrigado! Grazie Mille!

